Setting up PyTorch for OCaml
Setting up OCaml for modern AI development is a surprisingly niche topic, despite OCaml's strengths in building robust, type-safe systems. This guide focuses specifically on configuring OCaml development environments for NVIDIA's HGX AI platforms with 8x H100 GPUs for doing either continued pre-training or full-tuning of large language models. While a few quant funds have invested heavily in OCaml for their AI infrastructure, there's remarkably little public documentation about setting up OCaml with these dense GPU configurations. We'll walk through a complete setup of OCaml with CUDA and PyTorch on Ubuntu, with specific attention to the unique requirements of these multi-GPU systems that a lot of funds are provisioning these days.
System Dependencies
Before starting, ensure you're running Ubuntu. This setup has been tested on Ubuntu and requires root privileges for several installation steps.
# Check your Ubuntu version
lsb_release -a
First, let's install the basic system dependencies. These packages provide essential development tools and libraries needed for the rest of our setup:
sudo apt-get update
sudo apt-get install -y \
build-essential \
pciutils \
wget \
clang \
libaio-dev \
python3-pip \
python3-venv
NVIDIA Driver Installation
The NVIDIA driver installation varies depending on whether you're running a desktop or headless system:
# For desktop systems with X.org or Wayland
sudo apt-get -y install nvidia-driver-550
# For headless systems (servers without display)
sudo apt-get -y install --no-install-recommends nvidia-headless-550
# Install CUDA toolkit
sudo apt-get -y install nvidia-cuda-toolkit
This installs the NVIDIA driver version 550 and the CUDA toolkit, which provides the necessary components for GPU acceleration.
Python Environment Setup
First, let's install pyenv and configure Python 3.12.4:
# Install pyenv dependencies
sudo apt-get install -y make build-essential libssl-dev zlib1g-dev \
libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm \
libncursesw5-dev xz-utils tk-dev libxml2-dev libxmlsec1-dev libffi-dev liblzma-dev
# Install pyenv
curl https://pyenv.run | bash
# Add pyenv to your shell configuration (~/.bashrc or ~/.zshrc)
echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bashrc
echo 'command -v pyenv >/dev/null || export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bashrc
echo 'eval "$(pyenv init -)"' >> ~/.bashrc
# Reload shell configuration
source ~/.bashrc
# Install Python 3.12.4
pyenv install 3.12.4
# Set Python 3.12.4 as global version
pyenv global 3.12.4
# Verify installation
python --version # Should output: Python 3.12.4
# Upgrade pip
python -m pip install --upgrade pip
# Install PyTorch with CUDA support
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# Install NVIDIA cuDNN
pip install nvidia-cudnn-cu11
# Install Hugging Face libraries
pip install transformers datasets accelerate
# Install scientific computing packages
pip install scipy numpy pandas
# Install optimized attention implementations
pip install flash-attn --no-build-isolation
pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
# Install GPU monitoring tools
pip install nvitop
DeepSpeed and Megatron-LM Installation
DeepSpeed Installation
DeepSpeed provides optimization features for training large models. Let's install it with CUDA operations support:
# Basic installation
pip install deepspeed
# OR: Install from source for latest features
git clone https://github.com/microsoft/DeepSpeed.git
cd DeepSpeed
pip install -e .
# OR: Install with pre-compiled operations (recommended)
DS_BUILD_OPS=1 pip install deepspeed --global-option="build_ext" --global-option="-j8"
Verify the installation and check which operations are available:
ds_report
Advanced installation options:
# Install specific operations
DS_BUILD_FUSED_ADAM=1 pip install deepspeed # FusedAdam support
DS_BUILD_FUSED_LAMB=1 pip install deepspeed # FusedLamb support
DS_BUILD_SPARSE_ATTN=1 pip install deepspeed # Sparse attention support
# Skip CUDA version check if needed (use with caution)
DS_SKIP_CUDA_CHECK=1 pip install deepspeed
Megatron-LM Installation
Megatron-LM enables training large transformer models at scale. Here's how to set it up:
# Install NVIDIA Apex first
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir \
--global-option="--cpp_ext" \
--global-option="--cuda_ext" ./
cd ..
# Install Megatron-LM
git clone https://github.com/NVIDIA/Megatron-LM.git
cd Megatron-LM
git checkout core_r0.5.0
pip install --no-use-pep517 -e .
OCaml Setup
Finally, we'll set up the OCaml environment with PyTorch bindings:
# Install OCaml package manager
sudo apt-get install -y opam m4 pkg-config
# Initialize OPAM
opam init --auto-setup --yes
eval $(opam env)
# Create new OCaml environment
opam switch create 4.14.1
eval $(opam env)
# Install OCaml development tools
opam install -y dune merlin ocaml-lsp-server odoc ocamlformat utop
# Install Torch dependencies and bindings
opam install -y ctypes ctypes-foreign conf-pkg-config
opam install -y torch
This sets up:
- OPAM (OCaml Package Manager)
- OCaml 4.14.1 environment
- Development tools including:
- Dune (build system)
- Merlin (code completion)
- LSP server (IDE integration)
- Documentation tools
- UTop (enhanced REPL)
- PyTorch bindings for OCaml
Verification
After installation and system reboot, verify your setup:
# Check NVIDIA driver installation
nvidia-smi
# Check GPU interconnect topology
nvidia-smi topo -m
# Start OCaml REPL and test Torch
utop
# In utop:
open Torch;;
You should see your GPU listed in the nvidia-smi
output and be able to import the Torch module in OCaml without errors.
Optional: Experiment Tracking Setup
If you plan to track your machine learning experiments, you can set up Weights & Biases alongside Hugging Face:
# Install Weights & Biases
pip install wandb
# Log in to Weights & Biases (this will prompt for your API key)
wandb login
# Install and log in to Hugging Face
pip install huggingface_hub
huggingface-cli login
You can get your W&B API key from https://wandb.ai/settings and your Hugging Face token from https://huggingface.co/settings/tokens .
Example Project: XOR Neural Network
Let's create the Hello World OCaml project that trains a neural network to learn the XOR function. First, create a new project:
# Create project directory
mkdir xor_example
cd xor_example
# Initialize dune project
dune init project xor_example
cd xor_example
Now, create a new file bin/main.ml
:
open Base
open Torch
(* XOR truth table *)
let input_data =
Tensor.of_float2 [|
[|0.; 0.|];
[|0.; 1.|];
[|1.; 0.|];
[|1.; 1.|];
|]
let target_data =
Tensor.of_float2 [|
[|0.|];
[|1.|];
[|1.|];
[|0.|];
|]
let () =
(* Create a simple network with one hidden layer *)
let vs = Var_store.create ~name:"xor" () in
let hidden = Layer.linear vs ~input_dim:2 4 ~activation:Relu in
let output = Layer.linear vs ~input_dim:4 1 ~activation:Sigmoid in
(* Define the model *)
let model x =
Layer.forward hidden x
|> Layer.forward output
in
(* Training configuration *)
let learning_rate = 0.05 in
let optimizer = Optimizer.adam vs ~learning_rate in
(* Training loop *)
for epoch = 1 to 2000 do
(* Forward pass *)
let predicted = model input_data in
let loss = Tensor.mse_loss predicted target_data in
(* Backward pass *)
Optimizer.backward_step optimizer ~loss;
(* Print progress every 100 epochs *)
if epoch % 100 = 0 then
Stdio.printf "Epoch %d: Loss = %f\n%!"
epoch (Tensor.float_value loss)
done;
(* Print final results *)
let final_output = model input_data in
Stdio.printf "\nFinal predictions:\n";
Tensor.print final_output
Update the dune
file in the bin
directory:
(executable
(name main)
(libraries base stdio torch))
Build and run the project:
# Build the project
dune build
# Run the example
dune exec xor_example
If that runs correctly, congratuinals you're ready to orchestrate your own training runs with OCaml now.